Nonlinear optics

Lecturer

Pascal KOCKAERT (Coordinator)

Course mnemonic PHYS-H510

ECTS credits 5 credits

Language(s) of instruction English

Course period Second term

Campus Solbosch

Course content

This course begins with the description of light-matter interactions, on the basis of the constitutive equations appearing in Maxwell equations. After a brief review on linear systems, the nonlinear systems are studied, firstly from a very general point of view (non local, non instantaneous, order n), secondly in the most frequent cases that are encountered in optics: sum and difference frequency generation; nonlinear propagation; Kerr, Raman and Brillouin effects; phase conjugation, self-focusing; four-wave mixing; solitons; metrology of frequencies.

Objectives (and/or specific learning outcomes)

Understand physical mechanisms sustending optical nonlinear reponse in matter and use these principles to select and justify the use of a specific nonlinear optical device for a photonic application.

Teaching method and learning activities

Classical course with transparencies and PDF slides. In order to illustrate the theory, exercices are proposed to the students.

Contribution to the teaching profile

- > modelisation of a nonlinear system ;
- > matter physics : microscopic symmetries, electronic nonlinearities, molecular reorientation,...
- > photonics : basic mechanisms for applications, such as frequency conversion, nonlinear spectroscopy, mode-locking, signal characterization, ...
- > multidisciplinary problem solving : link between mathematical models and experimental devices ;
- > group working, at the laboratory

References, bibliography and recommended reading

Among references that are available through the library of the university the following ones could be of some help :

- ¹ « Nonlinear Optics », Boyd, 3eme ed., available at http:// www.sciencedirect.com.ezproxy.ulb.ac.be/science/ book/9780123694706
- ² « Applications of nonlinear fiber optics », Agrawal, 2eme ed., available at http://www.sciencedirect.com/science/ book/9780123743022
- ³ « Extreme nonlinear optics », Wegener, available at https://link.springer.com.ezproxy.ulb.ac.be/ book/10.1007%2Fb137953
- ⁴ « Nonlinear optical crystals : A complete survey », Nikogosyan, available at https://link.springer.com.ezproxy.ulb.ac.be/ book/10.1007/b138685
- ⁵ « Crystallography and the world of symmetry », Chatterjee, available at https://link.springer.com.ezproxy.ulb.ac.be/ book/10.1007/978-3-540-69899-9

Course notes

Université virtuelle

Other information

Place(s) of teaching

Solbosch

Contact(s)

Pacal KOCKAERT Bât. C, service OPÉRA, C3.122A Email: Pascal.Kockaert@ulb.ac.be

Evaluation method(s)

Oral examination and Written report

Evaluation method(s) (additional information) Oral exam.

Determination of the mark (including the weighting of partial marks) Theory 60%, Lab and exercises 40%.

Main language(s) of evaluation English

Other language(s) of evaluation, if applicable French

Programmes

Programmes proposing this course at the Brussels School of Engineering

MA-IRPH | Master of science in Physical Engineering | finalité Professional/unit 2