

Modeling and control of dynamical systems in bioengineering

Titulaires

Philippe BOGAERTS (Coordonnateur) et Didier GONZE

Mnémonique du cours

BING-H4000

Crédits ECTS

5 crédits

Langue(s) d'enseignement

Anglais

Période du cours

Deuxième quadrimestre

Campus

Solbosch

Contenu du cours

Partie 1 (Ph. Bogaerts, 18h): Introduction à l'estimation paramétrique, Structures de modèles mathématiques (taxinomie, propriétés), Estimation paramétrique (moindres carrés, maximum de vraisemblance), Modélisation mathématique des réseaux biologiques, Cas d'étude.

Partie 1 (D. Gonze, 18h): Modèles discrets et continus (ODE) en dynamique des populations: équation logistique, modèles discrets de Ricker et de Nicholson-Bailey, modèle de Gompertz, effet Allee, modèles de Lotka-Volterra, chemostat, modèles SIR. Présentation de quelques articles récents.

Partie 2 (Ph. Bogaerts, 24h): (Bio)chemical process control (Réglage d'un réacteur chimique parfaitement mélangé : rappels de principes généraux. Réglage d'un réacteur discontinu parfaitement mélangé non isotherme. Régulation de systèmes à temps mort et de systèmes à déphasage non minimum. Compensation anticipative des perturbations. Régulation de procédés à plusieurs grandeurs d'entrée et plusieurs grandeurs de sortie.).

Objectifs (et/ou acquis d'apprentissages spécifiques)

Au terme de l'enseignement, l'étudiant sera capable

- de choisir, développer et analyser un modèle dynamique pour décrire un système en biologie et/ou en bioingénierie;
- > de construire un modèle mathématique d'un procédé sur la base de mesures expérimentales;
- de concevoir des structures de régulation pour des procédés de l'industrie chimique et biotechnologique.

Pré-requis et co-requis

Connaissances et compétences pré-requises

Bases en:

- > algèbre linéaire;
- > analyse de fonctions;
- > théorie des statistiques et probabilités;
- > dynamique des systèmes linéaires.

Plus spécifiquement :

- vecteurs et matrices (produit, inverse, trace, transposée, etc.);
- minimisation de fonctions:
- développement en série de Taylor;
- intégration d'équations différentielles ordinaires du premier ordre;
- espérance mathématique, densité de probabilité, moyenne, variance, processus stochastiques, bruit blanc, distribution gaussienne, distribution uniforme;
- équations d'état et fonctions de transfert pour les systèmes dynamiques linéaires et permanents.

Méthodes d'enseignement et activités d'apprentissages

Partie 1: 3 ECTS de cours magistraux (en anglais).

Partie 2: 1 ECTS de cours magistraux (en anglais) et 1 ECTS d'exercices dirigés (simulations sur ordinateur).

Contribution au profil d'enseignement

- > Modélisation mathématique des systèmes biologiques
- > Opérations unitaires, génie des procédés, régulation et optimisation
- Choisir des méthodes d'analyse statistique pertinentes, élaborer des modèles, interpréter les résultats et évaluer leur fiabilité de manière critique

Support(s) de cours

Podcast, Syllabus et Université virtuelle

Autres renseignements

Lieu(x) d'enseignement

Solbosch

Contact(s)

Philippe Bogaerts : École polytechnique de Bruxelles, 3BIO-BioControl (Biosystems Modeling and Control); email: philippe.bogaerts@ulb.be

Didier Gonze : Faculté des Sciences, Unité de Chronobiologie théorique; email: didier.gonze@ulb.be

Méthode(s) d'évaluation

Examen oral et Examen écrit

Méthode(s) d'évaluation (complément)

1ère épreuve : examen écrit avec le Prof. D. Gonze

> matière : Partie 1 enseignée par le Prof. Gonze

2^{ème} épreuve : examen oral (sans préparation) avec le Prof. Ph. Bogaerts

- > matière de la question 1 : Partie 1 enseignée par le Prof. Bogaerts
- > matière de la guestion 2 : Partie 2

Construction de la note (en ce compris, la pondération des notes partielles)

- > Examen écrit Prof. Gonze : 30% (note 1)
- > Examen oral Prof. Bogaerts (Partie 1 « modélisation ») : 30% (note 2)
- Examen oral Prof. Bogaerts (Partie 2 « contrôle »): 40% (note 3)

Note finale = 0,3 * note 1 + 0,3 * note 2 + 0,4 * note 3

Si l'une de ces trois notes partielles est supérieure ou égale à 10/20, elle est alors définitivement acquise (de session en session et/ou d'année en année) et l'épreuve correspondante ne peut plus être représentée.

Une note de présence peut être obtenue pour 1, 2 ou les 3 note(s) partielle(s) mentionnée(s) ci-dessus, conduisant alors à une note de présence pour la note finale de l'unité d'enseignement. Cependant, il reste possible d'acquérir définitivement un résultat supérieur ou égal à 10/20 pour la (ou les) note(s) partielle(s) dont les épreuves correspondantes auraient été présentées avec succès.

Si, à l'issue de la délibération, l'UE n'est pas validée, alors toutes les épreuves dont la note est inférieure à 10/20 doivent être représentées (d'une session à l'autre ou d'une année à l'autre).

Langue(s) d'évaluation principale(s)

Anglais

Programmes

Programmes proposant ce cours à l'école polytechnique de Bruxelles

MA-IRBC | Master : bioingénieur en chimie et bioindustries | finalité Spécialisée/bloc 1 et MA-

IRBE | Master : bioingénieur en sciences et technologies de

l'environnement | finalité Spécialisée/bloc 1

Programmes proposant ce cours à la faculté des Sciences

MA-BINF | Master en bioinformatique et modélisation | finalité Approfondie/bloc 2, MA-IRBC | Master : bioingénieur en chimie et bioindustries | finalité Spécialisée/bloc 1 et MA-IRBE | Master : bioingénieur en sciences et technologies de l'environnement | finalité Spécialisée/bloc 1