

Social-ecological systems

Titulaire

Farid DAHDOUH-GUEBAS (Coordonnateur)

Mnémonique du cours

BIOL-F4005

Langue(s) d'enseignement

Anglais

Période du cours

Premier quadrimestre

Campus

Plaine

Contenu du cours

Voir description en anglais

Objectifs (et/ou acquis d'apprentissages spécifiques)

Voir description en anglais

Méthodes d'enseignement et activités d'apprentissages

Voir description en anglais

Contribution au profil d'enseignement

- 1.1. Renforcer ses connaissances en Biologie et les utiliser tant dans une démarche scientifique fondamentale que dans une perspective appliquée.
- 1.2. Acquérir des savoirs par une recherche personnelle et critique de la littérature scientifique.
- 1.8. Comprendre l'influence des facteurs abiotiques et biotiques. , y compris les activités humaines, sur le fonctionnement des écosystèmes
- 1.9. Appréhender et utiliser la modélisation des systèmes biologiques pour mettre en évidence leurs mécanismes fondamentaux et leur fonctionnalité.
- 2.1. Observer un système biologique en laboratoire ou dans le milieu naturel et en extraire les informations pertinentes pour résoudre un problème.
- 2.2. Concevoir, planifier, développer et mettre en oeuvre un protocole permettant de tester une hypothèse.
- 2.3. Utiliser des outils d'analyse des données y compris statistique pour répondre à une question scientifique.
- 2.4. Acquérir rapidement de nouvelles techniques expérimentales.

- 2.5. Confronter les résultats aux concepts existants pour en produire une analyse critique.
- 2.6. Reconnaitre les explications inconsistantes et les généralisations abusives.
- 2.7. Comprendre un système biologique à la fois par l'isolement d'une partie du système (approche réductionniste) mais également au niveau global, notamment par l'étude des interactions entre les parties.
- 3.1. Effectuer une recherche originale dans un domaine spécialisé en vue de répondre à une question scientifique.
- 3.2. Faire preuve de créativité, d'autonomie afin de produire un savoir original.
- 3.3. Définir les objectifs et concevoir des solutions originales et ambitieuses.
- 3.4. Identifier les besoins et trouver les expertises requises.
- 3.5. Concevoir et mettre en place des approches expérimentales efficientes pour résoudre une question scientifique.
- 3.6. Faire preuve de polyvalence et intégrer la multidisciplinarité dans la gestion d'un projet.
- 4.1. Développer une argumentation scientifique.
- 4.2. Défendre un projet et un travail de recherche personnel.
- 4.3. Rédiger un rapport présentant un problème, les modèles et techniques utilisés ainsi que les résultats obtenus en respectant les normes scientifiques.
- 4.4. Discuter des implications pratiques et théoriques d'une recherche ainsi que de ses perspectives.
- 5.1. Faire preuve d'honnêteté intellectuelle dans sa démarche scientifique et dans la communication associée.
- 5.2. Percevoir les enjeux sociétaux et éthiques en relation avec sa discipline
- 5.3. Respecter les sources et la propriété intellectuelle.

Références, bibliographie et lectures recommandées

Voir description en anglais

Autres renseignements

Lieu(x) d'enseignement

Plaine

Contact(s)

Voir description en anglais

Méthode(s) d'évaluation

Autre

Méthode(s) d'évaluation (complément)

Voir description en anglais

Construction de la note (en ce compris, la pondération des notes partielles)

Voir description en anglais

Langue(s) d'évaluation principale(s)

Anglais

Programmes

Programmes proposant ce cours à la faculté des Sciences

MA-BIOR | Master en biologie des organismes et écologie | finalité Approfondie/bloc 1, finalité Approfondie/bloc 2 et finalité Erasmus Mundus Joint Master Degree in Tropical Biodiversity and Ecosystems - TROPIMUNDO/bloc 1, MA-ENVI | Master en sciences et gestion de l'environnement | finalité Gestion de l'environnement/bloc 2, finalité Sciences de l'environnement/bloc 1 et finalité Sciences de l'environnement/bloc 2 et MA-IRBA | Master : bioingénieur en sciences agronomiques | finalité Spécialisée/bloc 2

Programmes proposant ce cours à l'école polytechnique de Bruxelles

MA-IRBA | Master : bioingénieur en sciences agronomiques | finalité Spécialisée/bloc 2