

Monte Carlo Methods

Titulaire

Pierre-Etienne LABEAU (Coordonnateur)

Mnémonique du cours

MATH-H507

Crédits ECTS

2 crédits

Langue(s) d'enseignement

Anglais

Période du cours

Premier quadrimestre

Campus

Solbosch

Contenu du cours

Introduction aux méthodes de Monte Carlo. Génération de nombres aléatoires (distributions continues et discrètes). Evaluation par Monte Carlo d'intégrales de dimensions finies. Précision de l'estimation. Techniques de réduction de variance. Simulation analogue de problèmes stochastiques.

Objectifs (et/ou acquis d'apprentissages spécifiques)

Introduire les méthodes de Monte Carlo et leurs applications. L'étudiant doit être à même à la fin du cours d'écrire un programme utilisant des méthodes de Monte Carlo dans des cas simples.

Pré-requis et co-requis

Cours ayant celui-ci comme pré-requis

PHYS-H501 | Introduction to medical physics | 3 crédits

Méthodes d'enseignement et activités d'apprentissages

Cours ex cathedra: 14h

Exercices: 4h

Vu la situation sanitaire, les cours seront également disponibles en ligne.

Contribution au profil d'enseignement

Cette unité d'enseignement contribue aux compétences suivantes :

- Abstraire, modéliser et simuler des systèmes physiques complexes rencontrés dans les applications biomédicales (bioélectricité, biomécanique, écoulements, etc.)
- > Se représenter les mécanismes biologiques fondamentaux depuis la biochimie de la cellule jusqu'au fonctionnement des principaux systèmes de la physiologie humaine

Références, bibliographie et lectures recommandées

I.M. Sobol', A primer for the Monte Carlo method, CRC Press

Autres renseignements

Lieu(x) d'enseignement

Solbosch

Contact(s)

Prof. Pierre-Etienne Labeau pierre.etienne.labeau@ulb.be DB3-153

Méthode(s) d'évaluation

Autre

Méthode(s) d'évaluation (complément)

Examen oral : l'étudiant présente un article scientifique choisi parmi une sélection proposée

Construction de la note (en ce compris, la pondération des notes partielles)

Examen: 100%

Langue(s) d'évaluation principale(s)

Anglais

Programmes

Programmes proposant ce cours à l'école polytechnique de Bruxelles

MA-IRCB | **Master : ingénieur civil biomédical** | finalité Spécialisée/bloc 2