Multi-Physics Modelling and Simulation

Lecturer

Johan GYSELINCK (Coordinator)

Course mnemonic ELEC-H419

ECTS credits 4 credits

Language(s) of instruction English

Course period First term

Campus Solbosch

Course content

The prime focus is on the resolution of 2D and 3D lowfrequency electromagnetic problems by means of the finiteelement method and the ONELAB open-source software, but other physics and modelling methods are dealt with. See the list below.

Scope of the course:

- > physics covered: electromagnetics (electrokinetics, magnetostatics, magnetodynamics), thermics (heat conduction), elasticity, and their coupling, plus optimisation
- > modelling methods: mostly the finite-element (FE) method, but also finite-difference and equivalent-circuit modelling, and analytical resolution
- > space dimensions: 1D, 2D and 3D problems
- > **time dimension:** static, time-stepping, phasor-based and eigenvalue problems

Used Software:

- > ONELAB, Open Numerical Engineering LABoratory, http:// onelab.info/
- Gmsh, A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, https://gmsh.info/
- GetDP, FE solver, A General Environment for the Treatment of Discrete Problems, https://getdp.info/, https:// gitlab.onelab.info/getdp/getdp
- > Atom, A hackable text editor for the 21st Century, https:// atom.io/

Objectives (and/or specific learning outcomes)

> have a general overview of the various numerical and analytical methods that are available and commonly used to solve PDEs and boundary-value problems

- > understand the mathematical basis of these methods
- > revise the various physics and related material modelling
- > use extensively the open-source ONELAB/Gmsh/GetDP software and appreciate its great flexibility
- > become aware of and critical about various practical issues, e.g. mesh density and accuracy

Teaching method and learning activities

- > lectures, with live demonstration of the software and active participation of the students
- > exercises and tests with the software

Contribution to the teaching profile

This teaching unit contributes to the following competences:

- > In-depth knowledge and understanding of exact sciences with the specificity of their application to engineering
- > In-depth knowledge and understanding of the advanced methods and theories to schematize and model complex problems or processes
- > Has a broad scientific knowledge, understanding and skills to be able to design, produce and maintain complex mechanical, electrical and/or energy systems with a focus on products, systems and services.

Other information

Place(s) of teaching

Solbosch

Contact(s)

Johan Gyselinck, johan.gyselinck@ulb.be BEAMS department, Electrical Energy research unit, ULB https://scholar.google.com/citations? user=mV_VDDsAAAAJ&hl=en

Evaluation method(s)

written examination and Practice work

Determination of the mark (including the weighting of partial marks)

Written exam in January/September, with questions on theory and application (around 50% of the grade), and with exercises using the software (around 50% of the grade).

Main language(s) of evaluation

English

Programmes

Programmes proposing this course at the Brussels School of Engineering MA-IREM | Master of science in Electromechanical Engineering | finalité Professional/unit 1

Page 2/2